Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana.

نویسندگان

  • Hisako Ooka
  • Kouji Satoh
  • Koji Doi
  • Toshifumi Nagata
  • Yasuhiro Otomo
  • Kazuo Murakami
  • Kenichi Matsubara
  • Naoki Osato
  • Jun Kawai
  • Piero Carninci
  • Yoshihide Hayashizaki
  • Koji Suzuki
  • Keiichi Kojima
  • Yoshinori Takahara
  • Koji Yamamoto
  • Shoshi Kikuchi
چکیده

The NAC domain was originally characterized from consensus sequences from petunia NAM and from Arabidopsis ATAF1, ATAF2, and CUC2. Genes containing the NAC domain (NAC family genes) are plant-specific transcriptional regulators and are expressed in various developmental stages and tissues. We performed a comprehensive analysis of NAC family genes in Oryza sativa (a monocot) and Arabidopsis thaliana (a dicot). We found 75 predicted NAC proteins in full-length cDNA data sets of O. sativa (28,469 clones) and 105 in putative genes (28,581 sequences) from the A. thaliana genome. NAC domains from both predicted and known NAC family proteins were classified into two groups and 18 subgroups by sequence similarity. There were a few differences in amino acid sequences in the NAC domains between O. sativa and A. thaliana. In addition, we found 13 common sequence motifs from transcriptional activation regions in the C-terminal regions of predicted NAC proteins. These motifs probably diverged having correlations with NAC domain structures. We discuss the relationship between the structure and function of the NAC family proteins in light of our results and the published data. Our results will aid further functional analysis of NAC family genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Evolutionary and Expression Analysis of FCS-Like Zinc finger Gene Family Yields Insights into Their Origin, Expansion and Divergence.

Plant evolution is characterized by frequent genome duplication events. Expansion of habitat resulted in the origin of many novel genes and genome duplication events which in turn resulted in the expansion of many regulatory gene families. The plant-specific FCS-Like Zinc finger (FLZ) gene family is characterized by the presence of a FCS-Like Zinc finger (FLZ) domain which mediates the protein-...

متن کامل

Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa).

Auxin response factors (ARFs) are transcription factors that bind with specificity to TGTCTC-containing auxin response elements (AuxREs) found in promoters of primary/early auxin response genes and mediate responses to the plant hormone auxin. The ARF genes are represented by a large multigene family in plants. A comprehensive genome-wide analysis was carried out in this study to find all ARFs ...

متن کامل

Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa.

MicroRNAs (miRNAs) are a class of endogenous small RNAs that play important regulatory roles in both animals and plants. miRNA genes have been intensively studied in animals, but not in plants. In this study, we adopted a homology search approach to identify homologs of previously validated plant miRNAs in Arabidopsis thaliana and Oryza sativa. We identified 20 potential miRNA genes in Arabidop...

متن کامل

PlantGSEA: a gene set enrichment analysis toolkit for plant community

Gene Set Enrichment Analysis (GSEA) is a powerful method for interpreting biological meaning of a list of genes by computing the overlaps with various previously defined gene sets. As one of the most widely used annotations for defining gene sets, Gene Ontology (GO) system has been used in many enrichment analysis tools. EasyGO and agriGO, two GO enrichment analysis toolkits developed by our la...

متن کامل

In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa

Pathogenesis related (PR) proteins are low molecular weight family of proteins induced in plants under various biotic and abiotic stresses. They play an important role in plant-defense mechanism. PRs have wide range of functions, acting as hydrolases, peroxidases, chitinases, anti-fungal, protease inhibitors etc. In the present study, an attempt has been made to analyze promoter regions of PR1,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • DNA research : an international journal for rapid publication of reports on genes and genomes

دوره 10 6  شماره 

صفحات  -

تاریخ انتشار 2003